{ "id": "0905.4875", "version": "v1", "published": "2009-05-29T14:21:34.000Z", "updated": "2009-05-29T14:21:34.000Z", "title": "How can we recognize potentially ${\\bfΠ}^0_ξ$ subsets of the plane?", "authors": [ "Dominique Lecomte" ], "categories": [ "math.LO", "math.CT", "math.GN" ], "abstract": "Let $\\xi\\geq 1$ be a countable ordinal. We study the Borel subsets of the plane that can be made ${\\bf\\Pi}^0_\\xi$ by refining the Polish topology on the real line. These sets are called potentially ${\\bf\\Pi}^0_\\xi$. We give a Hurewicz-like test to recognize potentially ${\\bf\\Pi}^0_\\xi$ sets.", "revisions": [ { "version": "v1", "updated": "2009-05-29T14:21:34.000Z" } ], "analyses": { "subjects": [ "03E15", "54H05" ], "keywords": [ "real line", "borel subsets", "polish topology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.4875L" } } }