{ "id": "0905.4855", "version": "v1", "published": "2009-05-29T13:11:49.000Z", "updated": "2009-05-29T13:11:49.000Z", "title": "Lipschitz functions of perturbed operators", "authors": [ "Fyodor Nazarov", "Vladimir Peller" ], "comment": "6 pages", "categories": [ "math.FA", "math.CA", "math.CV", "math.SP" ], "abstract": "We prove that if $f$ is a Lipschitz function on $\\R$, $A$ and $B$ are self-adjoint operators such that ${\\rm rank} (A-B)=1$, then $f(A)-f(B)$ belongs to the weak space $\\boldsymbol{S}_{1,\\be}$, i.e., $s_j(A-B)\\le{\\rm const} (1+j)^{-1}$. We deduce from this result that if $A-B$ belongs to the trace class $\\boldsymbol{S}_1$ and $f$ is Lipschitz, then $f(A)-f(B)\\in\\boldsymbol{S}_\\Omega$, i.e., $\\sum_{j=0}^ns_j(f(A)-f(B))\\le\\const\\log(2+n)$. We also obtain more general results about the behavior of double operator integrals of the form $Q=\\iint(f(x)-f(y))(x-y)^{-1}dE_1(x)TdE_2(y)$, where $E_1$ and $E_2$ are spectral measures. We show that if $T\\in\\boldsymbol{S}_1$, then $Q\\in\\boldsymbol{S}_\\Omega$ and if $\\rank T=1$, then $Q\\in\\boldsymbol{S}_{1,\\be}$. Finally, if $T$ belongs to the Matsaev ideal $\\boldsymbol{S}_\\omega$, then $Q$ is a compact operator.", "revisions": [ { "version": "v1", "updated": "2009-05-29T13:11:49.000Z" } ], "analyses": { "subjects": [ "47A55", "47B49", "47A60" ], "keywords": [ "lipschitz function", "perturbed operators", "self-adjoint operators", "compact operator", "spectral measures" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.4855N" } } }