{ "id": "0905.4141", "version": "v2", "published": "2009-05-26T09:02:56.000Z", "updated": "2011-02-07T23:53:26.000Z", "title": "String and dilaton equations for counting lattice points in the moduli space of curves", "authors": [ "Paul Norbury" ], "comment": "23 pages", "categories": [ "math.AG", "math-ph", "math.MP" ], "abstract": "We prove that the Eynard-Orantin symplectic invariants of the curve xy-y^2=1 are the orbifold Euler characteristics of the moduli spaces of genus g curves. We do this by associating to the Eynard-Orantin invariants of xy-y^2=1 a problem of enumerating covers of the two-sphere branched over three points. This viewpoint produces new recursion relations---string and dilaton equations---between the quasi-polynomials that enumerate such covers.", "revisions": [ { "version": "v2", "updated": "2011-02-07T23:53:26.000Z" } ], "analyses": { "subjects": [ "32G15", "30F30", "05A15" ], "keywords": [ "counting lattice points", "moduli space", "dilaton equations", "orbifold euler characteristics", "eynard-orantin symplectic invariants" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.4141N" } } }