{ "id": "0905.3840", "version": "v1", "published": "2009-05-23T18:37:56.000Z", "updated": "2009-05-23T18:37:56.000Z", "title": "Blow-up phenomena for the Yamabe equation", "authors": [ "S. Brendle" ], "comment": "Published paper", "journal": "J. Amer. Math. Soc. 21, 951-979 (2008)", "categories": [ "math.DG", "math.AP" ], "abstract": "Let (M,g) be a compact Riemannian manifold of dimension n \\geq 3. The Compactness Conjecture asserts that the set of constant scalar curvature metrics in the conformal class of g is compact unless (M,g) is conformally equivalent to the round sphere. In this paper, we construct counterexamples to this conjecture in dimensions n \\geq 52.", "revisions": [ { "version": "v1", "updated": "2009-05-23T18:37:56.000Z" } ], "analyses": { "keywords": [ "yamabe equation", "blow-up phenomena", "constant scalar curvature metrics", "compactness conjecture asserts", "compact riemannian manifold" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "J. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }