{ "id": "0905.3487", "version": "v1", "published": "2009-05-21T13:15:37.000Z", "updated": "2009-05-21T13:15:37.000Z", "title": "A Simple Proof of an Inequality Connecting the Alternating Number of Independent Sets and the Decycling Number", "authors": [ "Vadim E. Levit", "Eugen Mandrescu" ], "comment": "4 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "If alpha=alpha(G) is the maximum size of an independent set and s_{k} equals the number of stable sets of cardinality k in graph G, then I(G;x)=s_{0}+s_{1}x+...+s_{alpha}x^{alpha} is the independence polynomial of G. In this paper we provide an elementary proof of the inequality claiming that the absolute value of I(G;-1) is not greater than 2^phi(G), for every graph G, where phi(G) is its decycling number.", "revisions": [ { "version": "v1", "updated": "2009-05-21T13:15:37.000Z" } ], "analyses": { "subjects": [ "05C69", "05A20", "52B05", "57M15" ], "keywords": [ "independent set", "decycling number", "simple proof", "alternating number", "inequality connecting" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.3487L" } } }