{ "id": "0905.3438", "version": "v1", "published": "2009-05-21T04:42:25.000Z", "updated": "2009-05-21T04:42:25.000Z", "title": "A note on the paper by Eckstein and Svaiter on \"General projective splitting methods for sums of maximal monotone operators\"", "authors": [ "Heinz H. Bauschke" ], "categories": [ "math.FA", "math.OC" ], "abstract": "In their recent SIAM J. Control Optim. paper from 2009, J. Eckstein and B.F. Svaiter proposed a very general and flexible splitting framework for finding a zero of the sum of finitely many maximal monotone operators. In this short note, we provide a technical result that allows for the removal of Eckstein and Svaiter's assumption that the sum of the operators be maximal monotone or that the underlying Hilbert space be finite-dimensional.", "revisions": [ { "version": "v1", "updated": "2009-05-21T04:42:25.000Z" } ], "analyses": { "subjects": [ "47H05", "47H09" ], "keywords": [ "maximal monotone operators", "general projective splitting methods", "control optim", "short note", "svaiters assumption" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }