{ "id": "0905.3281", "version": "v1", "published": "2009-05-20T11:16:10.000Z", "updated": "2009-05-20T11:16:10.000Z", "title": "The Domination Polynomials of Cubic graphs of order 10", "authors": [ "Saieed Akbari", "Saeid Alikhani", "Yee-hock Peng" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,x)=\\sum_{i=\\gamma(G)}^{n} d(G,i) x^{i}, where d(G,i) is the number of dominating sets of G of size i, and \\gamma(G) is the domination number of G. In this paper we study the domination polynomials of cubic graphs of order 10. As a consequence, we show that the Petersen graph is determined uniquely by its domination polynomial.", "revisions": [ { "version": "v1", "updated": "2009-05-20T11:16:10.000Z" } ], "analyses": { "subjects": [ "05C60" ], "keywords": [ "domination polynomial", "cubic graphs", "domination number", "simple graph" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.3281A" } } }