{ "id": "0905.2591", "version": "v3", "published": "2009-05-15T18:27:52.000Z", "updated": "2009-12-24T16:43:42.000Z", "title": "On the Betti numbers of a loop space", "authors": [ "Samson Saneblidze" ], "comment": "11 pages", "categories": [ "math.AT" ], "abstract": "Let $A$ be a special homotopy G-algebra over a commutative unital ring $\\Bbbk$ such that both $H(A)$ and $\\operatorname{Tor}_{i}^{A}(\\Bbbk,\\Bbbk)$ are finitely generated $\\Bbbk$-modules for all $i$, and let $\\tau_{i}(A)$ be the cardinality of a minimal generating set for the $\\Bbbk$-module $\\operatorname{Tor}_{i}^{A}(\\Bbbk,\\Bbbk).$ Then the set ${\\tau_{i}(A)} $ is unbounded if and only if $\\tilde{H}(A)$ has two or more algebra generators. When $A=C^{\\ast}(X;\\Bbbk)$ is the simplicial cochain complex of a simply connected finite $CW$-complex $X,$ there is a similar statement for the \"Betti numbers\" of the loop space $\\Omega X.$ This unifies existing proofs over a field $\\Bbbk$ of zero or positive characteristic.", "revisions": [ { "version": "v3", "updated": "2009-12-24T16:43:42.000Z" } ], "analyses": { "subjects": [ "55P35", "55U20", "55S30" ], "keywords": [ "loop space", "betti numbers", "special homotopy g-algebra", "simplicial cochain complex", "algebra generators" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.2591S" } } }