{ "id": "0905.1909", "version": "v1", "published": "2009-05-12T17:06:02.000Z", "updated": "2009-05-12T17:06:02.000Z", "title": "Concentration of random determinants and permanent estimators", "authors": [ "Kevin P. Costello", "Van Vu" ], "comment": "17 pages, no figures", "categories": [ "math.PR" ], "abstract": "We show that the absolute value of the determinant of a matrix with random independent (but not necessarily iid) entries is strongly concentrated around its mean. As an application, we show that the Godsil-Gutman and Barvinok estimators for the permanent of a strictly positive matrix give sub-exponential approximation ratios with high probability.", "revisions": [ { "version": "v1", "updated": "2009-05-12T17:06:02.000Z" } ], "analyses": { "subjects": [ "15A52" ], "keywords": [ "permanent estimators", "random determinants", "concentration", "sub-exponential approximation ratios", "random independent" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1909C" } } }