{ "id": "0905.1848", "version": "v3", "published": "2009-05-12T13:46:38.000Z", "updated": "2014-11-24T16:19:27.000Z", "title": "Existence and stability of solitons for the nonlinear Schrödinger equation on hyperbolic space", "authors": [ "Hans Christianson", "Jeremy Marzuola" ], "comment": "As noted in a recent work of Banica-Duyckaerts (arXiv:1411.0846), Section 5 should read that for sufficiently large mass, sub-critical problems can be solved via energy minimization for all d \\geq 2 and as a result Cazenave-Lions results can be applied in Section 6 with the same restriction. These requirements were addressed by the subsequent work with Metcalfe and Taylor in arXiv:1203.3612", "categories": [ "math.AP" ], "abstract": "We study the existence and stability of ground state solutions or solitons to a nonlinear stationary equation on hyperbolic space. The method of concentration compactness applies and shows that the results correlate strongly to those of Euclidean space.", "revisions": [ { "version": "v2", "updated": "2009-06-22T20:13:58.000Z", "comment": "Updated references; minor typos corrected", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-11-24T16:19:27.000Z" } ], "analyses": { "subjects": [ "35Q55", "35Q51" ], "keywords": [ "nonlinear schrödinger equation", "hyperbolic space", "ground state solutions", "concentration compactness applies", "nonlinear stationary equation" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/0951-7715/23/1/005", "journal": "Nonlinearity", "year": 2010, "month": "Jan", "volume": 23, "number": 1, "pages": 89 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010Nonli..23...89C" } } }