{ "id": "0905.1685", "version": "v1", "published": "2009-05-11T21:44:57.000Z", "updated": "2009-05-11T21:44:57.000Z", "title": "$C^{1,\\al}$ regularity of solutions to parabolic Monge-Ampére equations", "authors": [ "Panagiota Daskalopoulos", "Ovidiu Savin" ], "categories": [ "math.AP" ], "abstract": "We study interior $C^{1, \\al}$ regularity of viscosity solutions of the parabolic Monge-Amp\\'ere equation $$u_t = b(x,t) \\ddua,$$ with exponent $p >0$ and with coefficients $b$ which are bounded and measurable. We show that when $p$ is less than the critical power $\\frac{1}{n-2}$ then solutions become instantly $C^{1, \\al}$ in the interior. Also, we prove the same result for any power $p>0$ at those points where either the solution separates from the initial data, or where the initial data is $C^{1, \\beta}$.", "revisions": [ { "version": "v1", "updated": "2009-05-11T21:44:57.000Z" } ], "analyses": { "keywords": [ "parabolic monge-ampére equations", "regularity", "initial data", "parabolic monge-ampere equation", "viscosity solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1685D" } } }