{ "id": "0905.1645", "version": "v2", "published": "2009-05-11T15:50:06.000Z", "updated": "2009-06-05T11:45:58.000Z", "title": "Numerical analysis of nonlinear eigenvalue problems", "authors": [ "Eric Cancès", "Rachida Chakir", "Yvon Maday" ], "categories": [ "math.NA" ], "abstract": "We provide a priori error estimates for variational approximations of the ground state eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form $-{div} (A\\nabla u) + Vu + f(u^2) u = \\lambda u$, $\\|u\\|_{L^2}=1$. We focus in particular on the Fourier spectral approximation (for periodic problems) and on the $\\P_1$ and $\\P_2$ finite-element discretizations. Denoting by $(u_\\delta,\\lambda_\\delta)$ a variational approximation of the ground state eigenpair $(u,\\lambda)$, we are interested in the convergence rates of $\\|u_\\delta-u\\|_{H^1}$, $\\|u_\\delta-u\\|_{L^2}$ and $|\\lambda_\\delta-\\lambda|$, when the discretization parameter $\\delta$ goes to zero. We prove that if $A$, $V$ and $f$ satisfy certain conditions, $|\\lambda_\\delta-\\lambda|$ goes to zero as $\\|u_\\delta-u\\|_{H^1}^2+\\|u_\\delta-u\\|_{L^2}$. We also show that under more restrictive assumptions on $A$, $V$ and $f$, $|\\lambda_\\delta-\\lambda|$ converges to zero as $\\|u_\\delta-u\\|_{H^1}^2$, thus recovering a standard result for {\\em linear} elliptic eigenvalue problems. For the latter analysis, we make use of estimates of the error $u_\\delta-u$ in negative Sobolev norms.", "revisions": [ { "version": "v2", "updated": "2009-06-05T11:45:58.000Z" } ], "analyses": { "subjects": [ "65N15", "65N25", "65N30", "65T99", "35J60", "35P30" ], "keywords": [ "nonlinear eigenvalue problems", "numerical analysis", "variational approximation", "nonlinear elliptic eigenvalue problems", "ground state eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1645C" } } }