{ "id": "0905.1342", "version": "v2", "published": "2009-05-08T21:24:39.000Z", "updated": "2009-07-07T16:03:03.000Z", "title": "On conjugacy classes and derived length", "authors": [ "Edith Adan-Bante" ], "comment": "5 pages. Correction of typos and other misfortunes", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and $A$, $B$ and $D$ be conjugacy classes of $ G$ with $D\\subseteq AB=\\{xy\\mid x\\in A, y\\in B\\}$. Denote by $\\eta(AB)$ the number of distinct conjugacy classes such that $AB$ is the union of those. Set ${\\bf C}_G(A)=\\{g\\in G\\mid x^g=x {for all} x\\in A\\}$. If $AB=D$ then ${\\bf C}_G(D)/({\\bf C}_G(A)\\cap{\\bf C}_G(B))$ is an abelian group. If, in addition, $G$ is supersolvable, then the derived length of ${\\bf C}_G(D)/({\\bf C}_G(A)\\cap{\\bf C}_G(B))$ is bounded above by $2\\eta(AB)$.", "revisions": [ { "version": "v2", "updated": "2009-07-07T16:03:03.000Z" } ], "analyses": { "keywords": [ "derived length", "distinct conjugacy classes", "abelian group", "finite group" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1342A" } } }