{ "id": "0905.1302", "version": "v3", "published": "2009-05-08T17:24:29.000Z", "updated": "2010-03-23T01:24:25.000Z", "title": "On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus", "authors": [ "Erwan Lanneau", "Jean-Luc Thiffeault" ], "comment": "30 pages, 6 figures. amsart style. To appear in Annales de l'Institut Fourier. Added one reference in v3.", "journal": "Annales de l'Institut Fourier 61 (1), 105-144, 2011", "categories": [ "math.GT", "math.DS" ], "abstract": "We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham's proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus g=2 to 5, the mimimum dilatation is the smallest Salem number for polynomials of degree 2g.", "revisions": [ { "version": "v3", "updated": "2010-03-23T01:24:25.000Z" } ], "analyses": { "subjects": [ "37D40", "37E30" ], "keywords": [ "pseudo-anosov homeomorphisms", "minimum dilatation", "small genus", "smallest salem number", "hams proof" ], "tags": [ "journal article" ], "note": { "typesetting": "AMS-TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1302L" } } }