{ "id": "0905.1152", "version": "v2", "published": "2009-05-08T00:43:44.000Z", "updated": "2009-05-11T17:33:21.000Z", "title": "Equidistribution of expanding measures with local maximal dimension and Diophantine Approximation", "authors": [ "Ronggang Shi" ], "comment": "27 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "We consider improvements of Dirichlet's Theorem on space of matrices $M_{m,n}(R)$. It is shown that for a certain class of fractals $K\\subset [0,1]^{mn}\\subset M_{m,n}(R)$ of local maximal dimension Dirichlet's Theorem cannot be improved almost everywhere. This is shown using entropy and dynamics on homogeneous spaces of Lie groups.", "revisions": [ { "version": "v2", "updated": "2009-05-11T17:33:21.000Z" } ], "analyses": { "subjects": [ "22E40", "28D20", "11J83" ], "keywords": [ "diophantine approximation", "expanding measures", "local maximal dimension dirichlets theorem", "equidistribution", "lie groups" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1152S" } } }