{ "id": "0905.0971", "version": "v4", "published": "2009-05-07T09:01:48.000Z", "updated": "2010-06-14T12:03:19.000Z", "title": "Bernstein polynomials and spectral numbers for linear free divisors", "authors": [ "Christian Sevenheck" ], "comment": "14 pages", "categories": [ "math.AG" ], "abstract": "We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange's result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.", "revisions": [ { "version": "v4", "updated": "2010-06-14T12:03:19.000Z" } ], "analyses": { "subjects": [ "32S40", "34M35" ], "keywords": [ "bernstein polynomial", "spectral numbers", "reductive linear free divisors", "define suitable brieskorn lattices", "residue eigenvalues" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.0971S" } } }