{ "id": "0905.0944", "version": "v1", "published": "2009-05-07T02:20:58.000Z", "updated": "2009-05-07T02:20:58.000Z", "title": "The mathematical structure of quantum real numbers", "authors": [ "John V. Corbett" ], "comment": "24 pages, 0 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "The mathematical structure of the sheaf of Dedekind real numbers $\\RsubD(X)$ for a quantum system is discussed. The algebra of physical qualities is represented by an $O^{*}$ algebra $\\mathcal M$ that acts on a Hilbert space that carries an irreducible representation of the symmetry group of the system. $X =\\EsubS(\\mathcal M)$, the state space for $\\mathcal M$, has the weak topology generated by the functions $ a_{Q}(\\cdot)$, defined for $\\hat A \\in \\mathcal M_{sa} $ and $\\forall \\hat \\rho \\in \\EsubS(\\mathcal M) $, by $ a_{Q}(\\hat \\rho) = Tr \\hat A \\hat \\rho $. For any open subset $W$ of $\\EsubS(\\mathcal M)$, the function $ a_{Q}|_{W}$ is the numerical value of the quality $\\hat A$ defined to the extent $W$. The example of the quantum real numbers for a single Galilean relativistic particle is given.", "revisions": [ { "version": "v1", "updated": "2009-05-07T02:20:58.000Z" } ], "analyses": { "subjects": [ "47L90", "32L81" ], "keywords": [ "quantum real numbers", "mathematical structure", "single galilean relativistic particle", "dedekind real numbers", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.0944C" } } }