{ "id": "0905.0367", "version": "v1", "published": "2009-05-04T12:33:15.000Z", "updated": "2009-05-04T12:33:15.000Z", "title": "A q-analogue of de Finetti's theorem", "authors": [ "Alexander Gnedin", "Grigori Olshanski" ], "comment": "LaTeX, 15 pages", "journal": "Electronic Journal of Combinatorics 16 (2009), no. 1, paper #R78", "categories": [ "math.PR", "math.CO" ], "abstract": "A q-analogue of de Finetti's theorem is obtained in terms of a boundary problem for the q-Pascal graph. For q a power of prime this leads to a characterisation of random spaces over the Galois field F_q that are invariant under the natural action of the infinite group of invertible matrices with coefficients from F_q.", "revisions": [ { "version": "v1", "updated": "2009-05-04T12:33:15.000Z" } ], "analyses": { "subjects": [ "60G09", "60J50", "60C05" ], "keywords": [ "finettis theorem", "q-analogue", "infinite group", "natural action", "boundary problem" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.0367G" } } }