{ "id": "0904.4819", "version": "v1", "published": "2009-04-30T13:12:01.000Z", "updated": "2009-04-30T13:12:01.000Z", "title": "The independence polynomial of a graph at -1", "authors": [ "Vadim E. Levit", "Eugen Mandrescu" ], "comment": "16 pages; 13 figures", "categories": [ "math.CO", "cs.DM" ], "abstract": "If alpha=alpha(G) is the maximum size of an independent set and s_{k} equals the number of stable sets of cardinality k in graph G, then I(G;x)=s_{0}+s_{1}x+...+s_{alpha}x^{alpha} is the independence polynomial of G. In this paper we prove that: 1. I(T;-1) equels either -1 or 0 or 1 for every tree T; 2. I(G;-1)=0 for every connected well-covered graph G of girth > 5, non-isomorphic to C_{7} or K_{2}; 3. the absolute value of I(G;-1) is not greater than 2^nu(G), for every graph G, where nu(G) is its cyclomatic number.", "revisions": [ { "version": "v1", "updated": "2009-04-30T13:12:01.000Z" } ], "analyses": { "subjects": [ "05C69", "05A20", "05C05" ], "keywords": [ "independence polynomial", "absolute value", "cyclomatic number", "independent set", "cardinality" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.4819L" } } }