{ "id": "0904.4386", "version": "v1", "published": "2009-04-28T13:06:12.000Z", "updated": "2009-04-28T13:06:12.000Z", "title": "Intrinsic ultracontractivity for Schrodinger operators based on fractional Laplacians", "authors": [ "Kamil Kaleta", "Tadeusz Kulczycki" ], "categories": [ "math.PR", "math.SP" ], "abstract": "We study the Feynman-Kac semigroup generated by the Schr{\\\"o}dinger operator based on the fractional Laplacian $-(-\\Delta)^{\\alpha/2} - q$ in $\\Rd$, for $q \\ge 0$, $\\alpha \\in (0,2)$. We obtain sharp estimates of the first eigenfunction $\\phi_1$ of the Schr{\\\"o}dinger operator and conditions equivalent to intrinsic ultracontractivity of the Feynman-Kac semigroup. For potentials $q$ such that $\\lim_{|x| \\to \\infty} q(x) = \\infty$ and comparable on unit balls we obtain that $\\phi_1(x)$ is comparable to $(|x| + 1)^{-d - \\alpha} (q(x) + 1)^{-1}$ and intrinsic ultracontractivity holds iff $\\lim_{|x| \\to \\infty} q(x)/\\log|x| = \\infty$. Proofs are based on uniform estimates of $q$-harmonic functions.", "revisions": [ { "version": "v1", "updated": "2009-04-28T13:06:12.000Z" } ], "analyses": { "subjects": [ "47G30", "60G52" ], "keywords": [ "fractional laplacian", "schrodinger operators", "feynman-kac semigroup", "intrinsic ultracontractivity holds", "harmonic functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }