{ "id": "0904.4127", "version": "v2", "published": "2009-04-27T11:29:46.000Z", "updated": "2009-11-24T14:20:32.000Z", "title": "Limiting Distributions for Sums of Independent Random Products", "authors": [ "Zakhar Kabluchko" ], "comment": "31 pages", "categories": [ "math.PR" ], "abstract": "Let $\\{X_{i,j}:(i,j)\\in\\mathbb N^2\\}$ be a two-dimensional array of independent copies of a random variable $X$, and let $\\{N_n\\}_{n\\in\\mathbb N}$ be a sequence of natural numbers such that $\\lim_{n\\to\\infty}e^{-cn}N_n=1$ for some $c>0$. Our main object of interest is the sum of independent random products $$Z_n=\\sum_{i=1}^{N_n} \\prod_{j=1}^{n}e^{X_{i,j}}.$$ It is shown that the limiting properties of $Z_n$, as $n\\to\\infty$, undergo phase transitions at two critical points $c=c_1$ and $c=c_2$. Namely, if $c>c_2$, then $Z_n$ satisfies the central limit theorem with the usual normalization, whereas for $cc_1$. If the random variable $X$ is Gaussian, we recover the results of Bovier, Kurkova, and L\\\"owe [Fluctuations of the free energy in the REM and the $p$-spin SK models. Ann. Probab. 30(2002), 605-651].", "revisions": [ { "version": "v2", "updated": "2009-11-24T14:20:32.000Z" } ], "analyses": { "subjects": [ "60G50", "60F05", "60F10" ], "keywords": [ "independent random products", "limiting distributions", "spin sk models", "undergo phase transitions", "central limit theorem" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.4127K" } } }