{ "id": "0904.3980", "version": "v1", "published": "2009-04-25T14:19:53.000Z", "updated": "2009-04-25T14:19:53.000Z", "title": "Tame quivers and affine enveloping algebras", "authors": [ "Yong Jiang", "Jie Sheng" ], "comment": "30 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $\\mathfrak{g}$ be an affine Kac-Moody algebra with symmetric Cartan datum, $\\mathfrak{n^{+}}$ be the maximal nilpotent subalgebra of $\\mathfrak{g}$. By the Hall algebra approach, we construct integral bases of the $\\mathbb{Z}$-form of the enveloping algebra $U(\\mathfrak{n^{+}})$. In particular, the representation theory of tame quivers is essentially used in this paper.", "revisions": [ { "version": "v1", "updated": "2009-04-25T14:19:53.000Z" } ], "analyses": { "subjects": [ "16G20", "17B35" ], "keywords": [ "affine enveloping algebras", "tame quivers", "construct integral bases", "hall algebra approach", "maximal nilpotent subalgebra" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.3980J" } } }