{ "id": "0904.3615", "version": "v1", "published": "2009-04-23T08:13:01.000Z", "updated": "2009-04-23T08:13:01.000Z", "title": "Lipschitz metric for the Hunter-Saxton equation", "authors": [ "Alberto Bressan", "Helge Holden", "Xavier Raynaud" ], "categories": [ "math.AP" ], "abstract": "We study stability of solutions of the Cauchy problem for the Hunter-Saxton equation $u_t+uu_x=\\frac14(\\int_{-\\infty}^xu_x^2 dx-\\int_{x}^\\infty u_x^2 dx)$ with initial data $u_0$. In particular, we derive a new Lipschitz metric $d_\\D$ with the property that for two solutions $u$ and $v$ of the equation we have $d_\\D(u(t),v(t))\\le e^{Ct} d_\\D(u_0,v_0)$.", "revisions": [ { "version": "v1", "updated": "2009-04-23T08:13:01.000Z" } ], "analyses": { "subjects": [ "35Q53", "35B35", "35Q20" ], "keywords": [ "hunter-saxton equation", "lipschitz metric", "study stability", "cauchy problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.3615B" } } }