{ "id": "0904.1881", "version": "v3", "published": "2009-04-12T19:27:23.000Z", "updated": "2011-04-18T02:53:29.000Z", "title": "Stabilizers of $\\mathbb R$-trees with free isometric actions of $F_N$", "authors": [ "Ilya Kapovich", "Martin Lustig" ], "comment": "corrected the proof of Proposition 4.1, plus several minor fixes and updates; to appear in Journal of Group Theory", "journal": "J. Group Theory 14 (2011), no. 5, pp. 673-694", "doi": "10.1515/jgt.2010.070", "categories": [ "math.GR", "math.GT" ], "abstract": "We prove that if $T$ is an $\\mathbb R$-tree with a minimal free isometric action of $F_N$, then the $Out(F_N)$-stabilizer of the projective class $[T]$ is virtually cyclic. For the special case where $T=T_+(\\phi)$ is the forward limit tree of an atoroidal iwip element $\\phi\\in Out(F_N)$ this is a consequence of the results of Bestvina, Feighn and Handel, via very different methods. We also derive a new proof of the Tits alternative for subgroups of $Out(F_N)$ containing an iwip (not necessarily atoroidal): we prove that every such subgroup $G\\le Out(F_N)$ is either virtually cyclic or contains a free subgroup of rank two. The general case of the Tits alternative for subgroups of $Out(F_N)$ is due to Bestvina, Feighn and Handel.", "revisions": [ { "version": "v3", "updated": "2011-04-18T02:53:29.000Z" } ], "analyses": { "keywords": [ "stabilizer", "minimal free isometric action", "virtually cyclic", "atoroidal iwip element", "tits alternative" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.1881K" } } }