{ "id": "0904.1828", "version": "v1", "published": "2009-04-11T23:21:06.000Z", "updated": "2009-04-11T23:21:06.000Z", "title": "Periodic unfolding and homogenization for the Ginzburg-Landau Equation", "authors": [ "Myrto Sauvageot" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "We investigate, on a bounded domain $\\Omega$ of $\\R^2$ with fixed $S^1$-valued boundary condition $g$ of degree $d>0$, the asymptotic behaviour of solutions $u_{\\varepsilon,\\delta}$ of a class of Ginzburg-Landau equations driven by two parameter : the usual Ginzburg-Landau parameter, denoted $\\varepsilon$, and the scale parameter $\\delta$ of a geometry provided by a field of $2\\times 2$ positive definite matrices $x\\to A(\\frac{x}{\\delta})$. The field $\\R^2\\ni x\\to A(x)$ is of class $W^{2,\\infty}$ and periodic. We show, for a suitable choice of the $\\varepsilon$'s depending on $\\delta$, the existence of a limit configuration $u_\\infty\\in H^1_g(\\Omega,S^1)$, which, out of a finite set of singular points, is a weak solution of the equation of $S^1$-valued harmonic functions for the geometry related to the usual homogenized matrix $A^0$.", "revisions": [ { "version": "v1", "updated": "2009-04-11T23:21:06.000Z" } ], "analyses": { "subjects": [ "35J25", "35J60" ], "keywords": [ "periodic unfolding", "homogenization", "ginzburg-landau equations driven", "usual ginzburg-landau parameter", "valued harmonic functions" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.1828S" } } }