{ "id": "0904.1820", "version": "v1", "published": "2009-04-11T19:13:27.000Z", "updated": "2009-04-11T19:13:27.000Z", "title": "Semisimple symplectic characters of finite unitary groups", "authors": [ "C. Ryan Vinroot" ], "comment": "20 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "Let $G = {\\rm U}(2m, {\\mathbb F}_{q^2})$ be the finite unitary group, with $q$ the power of an odd prime $p$. We prove that the number of irreducible complex characters of $G$ with degree not divisible by $p$ and with Frobenius-Schur indicator -1 is $q^{m-1}$. We also obtain a combinatorial formula for the value of any character of ${\\rm U}(n, {\\mathbb F}_{q^2})$ at any central element, using the characteristic map of the finite unitary group.", "revisions": [ { "version": "v1", "updated": "2009-04-11T19:13:27.000Z" } ], "analyses": { "subjects": [ "20C33", "05E05" ], "keywords": [ "finite unitary group", "semisimple symplectic characters", "central element", "odd prime", "irreducible complex characters" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.1820V" } } }