{ "id": "0904.1781", "version": "v2", "published": "2009-04-11T07:06:05.000Z", "updated": "2014-06-24T22:58:45.000Z", "title": "Gradient estimates for the subelliptic heat kernel on H-type groups", "authors": [ "Nathaniel Eldredge" ], "comment": "23 pages; updated with peer-review revisions", "journal": "Journal of Functional Analysis 258 (2010), pp. 504-533", "doi": "10.1016/j.jfa.2009.08.012", "categories": [ "math.AP", "math.DG" ], "abstract": "We prove the following gradient inequality for the subelliptic heat kernel on nilpotent Lie groups $G$ of H-type: $$|\\nabla P_t f| \\le K P_t(|\\nabla f|)$$ where $P_t$ is the heat semigroup corresponding to the sublaplacian on $G$, $\\nabla$ is the subelliptic gradient, and $K$ is a constant. This extends a result of H.-Q. Li for the Heisenberg group. The proof is based on pointwise heat kernel estimates, and follows an approach used by Bakry, Baudoin, Bonnefont, and Chafa\\\"i.", "revisions": [ { "version": "v2", "updated": "2014-06-24T22:58:45.000Z" } ], "analyses": { "subjects": [ "35H10", "53C17" ], "keywords": [ "subelliptic heat kernel", "h-type groups", "gradient estimates", "nilpotent lie groups", "pointwise heat kernel estimates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.1781E" } } }