{ "id": "0904.1674", "version": "v1", "published": "2009-04-10T10:19:01.000Z", "updated": "2009-04-10T10:19:01.000Z", "title": "Pathological solutions to elliptic problems in divergence form with continuous coefficients", "authors": [ "Tianling Jin", "Vladimir Maz'ya", "Jean Van Schaftingen" ], "comment": "6 pages", "journal": "C. R. Math. Acad. Sci. Paris 347 (2009), no. 13-14, 773-778", "doi": "10.1016/j.crma.2009.05.008", "categories": [ "math.AP" ], "abstract": "We construct a function $u \\in W^{1,1}_{\\mathrm{loc}} (B(0,1))$ which is a solution to $\\Div (A \\nabla u)=0$ in the sense of distributions, where $A$ is continuous and $u \\not \\in W^{1,p}_{\\mathrm{loc}} (B(0,1))$ for $p > 1$. We also give a function $u \\in W^{1,1}_{\\mathrm{loc}} (B(0,1))$ such that $u \\in W^{1,p}_{\\mathrm{loc}}(B(0,1))$ for every $p < \\infty$, $u$ satisfies $\\Div (A \\nabla u)=0$ with $A$ continuous but $u \\not \\in W^{1, \\infty}_{\\mathrm{loc}}(B(0,1))$.", "revisions": [ { "version": "v1", "updated": "2009-04-10T10:19:01.000Z" } ], "analyses": { "subjects": [ "35D10" ], "keywords": [ "divergence form", "elliptic problems", "continuous coefficients", "pathological solutions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.1674J" } } }