{ "id": "0904.0922", "version": "v2", "published": "2009-04-06T16:07:49.000Z", "updated": "2009-10-02T17:50:00.000Z", "title": "Uniqueness of Shalika functionals (the Archimedean case)", "authors": [ "Avraham Aizenbud", "Dmitry Gourevitch", "Herve Jacquet" ], "comment": "9 pages. v2:corrected version, to appear in Pacific Journal of Mathematics", "journal": "Pacific Journal of Mathematics, 243 no. 2 (2009)", "categories": [ "math.RT" ], "abstract": "Let F be either R or C. Let $(\\pi,V)$ be an irreducible admissible smooth \\Fre representation of GL(2n,F). A Shalika functional $\\phi:V \\to \\C$ is a continuous linear functional such that for any $g\\in GL_n(F), A \\in \\Mat_{n \\times n}(F)$ and $v\\in V$ we have $$ \\phi[\\pi g & A 0 & g)v] = \\exp(2\\pi i \\re(\\tr (g^{-1}A))) \\phi(v).$$ In this paper we prove that the space of Shalika functionals on V is at most one dimensional. For non-Archimedean F (of characteristic zero) this theorem was proven in [JR].", "revisions": [ { "version": "v2", "updated": "2009-10-02T17:50:00.000Z" } ], "analyses": { "subjects": [ "22E45" ], "keywords": [ "shalika functional", "archimedean case", "uniqueness", "continuous linear functional", "characteristic zero" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.0922A" } } }