{ "id": "0904.0462", "version": "v2", "published": "2009-04-02T20:23:18.000Z", "updated": "2010-05-14T15:20:24.000Z", "title": "The universality of $\\ell_1$ as a dual space", "authors": [ "Daniel Freeman", "Edward Odell", "Thomas Schlumprecht" ], "comment": "30 pages", "categories": [ "math.FA" ], "abstract": "Let $X$ be a Banach space with a separable dual. We prove that $X$ embeds isomorphically into a $\\cL_\\infty$ space $Z$ whose dual is isomorphic to $\\ell_1$. If, moreover, $U$ is a space so that $U$ and $X$ are totally incomparable, then we construct such a $Z$, so that $Z$ and $U$ are totally incomparable. If $X$ is separable and reflexive, we show that $Z$ can be made to be somewhat reflexive.", "revisions": [ { "version": "v2", "updated": "2010-05-14T15:20:24.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "dual space", "universality", "banach space" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.0462F" } } }