{ "id": "0904.0456", "version": "v2", "published": "2009-04-02T20:07:18.000Z", "updated": "2009-06-18T20:51:44.000Z", "title": "Quantum phase estimation with lossy interferometers", "authors": [ "R. Demkowicz-Dobrzanski", "U. Dorner", "B. J. Smith", "J. S. Lundeen", "W. Wasilewski", "K. Banaszek", "I. A. Walmsley" ], "comment": "12 pages, 5 figures", "journal": "Phys. Rev. A 80, 013825 (2009)", "doi": "10.1103/PhysRevA.80.013825", "categories": [ "quant-ph" ], "abstract": "We give a detailed discussion of optimal quantum states for optical two-mode interferometry in the presence of photon losses. We derive analytical formulae for the precision of phase estimation obtainable using quantum states of light with a definite photon number and prove that maximization of the precision is a convex optimization problem. The corresponding optimal precision, i.e. the lowest possible uncertainty, is shown to beat the standard quantum limit thus outperforming classical interferometry. Furthermore, we discuss more general inputs: states with indefinite photon number and states with photons distributed between distinguishable time bins. We prove that neither of these is helpful in improving phase estimation precision.", "revisions": [ { "version": "v2", "updated": "2009-06-18T20:51:44.000Z" } ], "analyses": { "subjects": [ "42.50.St", "03.65.Ta", "06.20.Dk", "42.50.Lc" ], "keywords": [ "quantum phase estimation", "lossy interferometers", "indefinite photon number", "standard quantum limit", "improving phase estimation precision" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review A", "year": 2009, "month": "Jul", "volume": 80, "number": 1, "pages": "013825" }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009PhRvA..80a3825D" } } }