{ "id": "0904.0431", "version": "v2", "published": "2009-04-02T17:22:55.000Z", "updated": "2020-08-26T18:49:52.000Z", "title": "Hamilton cycles in 3-out", "authors": [ "Tom Bohman", "Alan Frieze" ], "comment": "We removed an annoying typo in equation (17)", "categories": [ "math.CO", "math.PR" ], "abstract": "Let G_{\\rm 3-out} denote the random graph on vertex set [n] in which each vertex chooses 3 neighbors uniformly at random. Note that G_{\\rm 3-out} has minimum degree 3 and average degree 6. We prove that the probability that G_{\\rm 3-out} is Hamiltonian goes to 1 as n tends to infinity.", "revisions": [ { "version": "v1", "updated": "2009-04-02T17:22:55.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2020-08-26T18:49:52.000Z" } ], "analyses": { "keywords": [ "hamilton cycles", "random graph", "average degree", "vertex chooses", "minimum degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.0431B" } } }