{ "id": "0903.5482", "version": "v1", "published": "2009-03-31T14:22:43.000Z", "updated": "2009-03-31T14:22:43.000Z", "title": "Flows and invariance for elliptic operators", "authors": [ "A. F. M. ter Elst", "Derek W. Robinson", "Adam Sikora" ], "categories": [ "math.AP" ], "abstract": "Let $S$ be the submarkovian semigroup on $L_2({\\bf R}^d)$ generated by a self-adjoint, second-order, divergence-form, elliptic operator $H$ with $W^{1,\\infty}$ coefficients $c_{kl}$. Further let $\\Omega$ be an open subset of ${\\bf R}^d$. Under mild conditions we prove that $S$ leaves $L_2(\\Omega)$ invariant if, and only if, it is invariant under the flows generated by the vector fields $\\sum_{l=1}^d c_{kl} \\partial_l$ for all $k$.", "revisions": [ { "version": "v1", "updated": "2009-03-31T14:22:43.000Z" } ], "analyses": { "subjects": [ "35J70" ], "keywords": [ "elliptic operator", "invariance", "submarkovian semigroup", "open subset", "mild conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.5482T" } } }