{ "id": "0903.5412", "version": "v1", "published": "2009-03-31T12:28:09.000Z", "updated": "2009-03-31T12:28:09.000Z", "title": "Invariant subspaces for operator semigroups with commutators of rank at most one", "authors": [ "Roman Drnovšek" ], "comment": "10 pages; to appear in Journal of Functional Analysis", "journal": "J. Funct. Anal. 256 (2009), no. 12, 4187-4196", "doi": "10.1016/j.jfa.2009.03.010", "categories": [ "math.FA" ], "abstract": "Let X be a complex Banach space of dimension at least 2, and let S be a multiplicative semigroup of operators on X such that the rank of AB - BA is at most 1 for all pairs {A,B} in S. We prove that S has a non-trivial invariant subspace provided it is not commutative. As a consequence we show that S is triangularizable if it consists of polynomially compact operators. This generalizes results from [H. Radjavi, P. Rosenthal, From local to global triangularization, J. Funct. Anal. 147 (1997), 443-456] and [G. Cigler, R. Drnov\\v{s}ek, D. Kokol-Bukov\\v{s}ek, T. Laffey, M. Omladi\\v{c}, H. Radjavi, P. Rosenthal, Invariant subspaces for semigroups of algebraic operators, J. Funct. Anal. 160 (1998), 452-465].", "revisions": [ { "version": "v1", "updated": "2009-03-31T12:28:09.000Z" } ], "analyses": { "subjects": [ "47A15", "47D03" ], "keywords": [ "operator semigroups", "commutators", "complex banach space", "non-trivial invariant subspace", "global triangularization" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.5412D" } } }