{ "id": "0903.5240", "version": "v3", "published": "2009-03-30T15:08:06.000Z", "updated": "2010-03-12T02:30:37.000Z", "title": "Transcendence of generating functions whose coefficients are multiplicative", "authors": [ "Jason P. Bell", "Michael Coons" ], "comment": "This paper has been withdrawn and replaced with a more current version; see arXiv:1003.2221", "categories": [ "math.NT" ], "abstract": "Let $K$ be a field of characteristic 0, $f:\\mathbb{N}\\to K$ be a multiplicative function, and $F(z)=\\sum_{n\\geq 1} f(n)z^n\\in K[[z]]$ be algebraic over $K(z)$. Then either there is a natural number $k$ and a periodic multiplicative function $\\chi(n)$ such that $f(n)=n^k \\chi(n)$ for all $n$, or $f(n)$ is eventually zero. In particular, the generating function of a multiplicative function $f:\\mathbb{N}\\to K$ is either transcendental or rational.", "revisions": [ { "version": "v3", "updated": "2010-03-12T02:30:37.000Z" } ], "analyses": { "subjects": [ "11N64", "11J91" ], "keywords": [ "generating function", "transcendence", "coefficients", "natural number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.5240B" } } }