{ "id": "0903.5090", "version": "v1", "published": "2009-03-29T20:17:03.000Z", "updated": "2009-03-29T20:17:03.000Z", "title": "Minimal Surfaces in Quasi-Fuchsian 3-Manifolds", "authors": [ "Biao Wang" ], "comment": "12 pages", "categories": [ "math.DG", "math.GT" ], "abstract": "In this paper, we prove that if a quasi-Fuchsian 3-manifold $M$ contains a simple closed geodesic with complex length $\\Lscr=l+i\\theta$ such that $\\theta/l\\gg{}1$, then it contains at least two minimal surfaces which are incompressible in $M$.", "revisions": [ { "version": "v1", "updated": "2009-03-29T20:17:03.000Z" } ], "analyses": { "subjects": [ "53A10", "57M05" ], "keywords": [ "minimal surfaces", "quasi-fuchsian", "simple closed geodesic" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.5090W" } } }