{ "id": "0903.4934", "version": "v1", "published": "2009-03-28T02:50:31.000Z", "updated": "2009-03-28T02:50:31.000Z", "title": "Embedded cmc hypersurfaces on hyperbolic spaces", "authors": [ "Oscar M. Perdomo" ], "comment": "14 pages, 8 figures", "categories": [ "math.DG" ], "abstract": "In this paper we will prove that for every integer n>1, there exists a real number H_0<-1 such that every H\\in (-\\infty,H_0) can be realized as the mean curvature of a embedding of H^{n-1}\\times S^1 in the (n+1)-dimensional spaces H^{n+1}. For $n=2$ we explicitly compute the value H_0. For a general value n, we provide function \\xi_n defined on (-\\infty,-1), which is easy to compute numerically, such that, if \\xi_n(H)>-2\\pi, then, H can be realized as the mean curvature of a embedding of H^{n-1}\\times S^1 in the (n+1)-dimensional spaces H^{n+1}.", "revisions": [ { "version": "v1", "updated": "2009-03-28T02:50:31.000Z" } ], "analyses": { "subjects": [ "53C42", "53C50" ], "keywords": [ "embedded cmc hypersurfaces", "hyperbolic spaces", "mean curvature", "real number" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.4934P" } } }