{ "id": "0903.4725", "version": "v2", "published": "2009-03-27T01:59:36.000Z", "updated": "2009-06-08T12:45:49.000Z", "title": "Boundedness of Sublinear Operators on Product Hardy Spaces and Its Application", "authors": [ "Der-Chen Chang", "Dachun Yang", "Yuan Zhou" ], "comment": "J. Math. Soc. Japan (to appear)", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $p\\in(0, 1]$. In this paper, the authors prove that a sublinear operator $T$ (which is originally defined on smooth functions with compact support) can be extended as a bounded sublinear operator from product Hardy spaces $H^p({{\\mathbb R}^n\\times{\\mathbb R}^m})$ to some quasi-Banach space ${\\mathcal B}$ if and only if $T$ maps all $(p, 2, s_1, s_2)$-atoms into uniformly bounded elements of ${\\mathcal B}$. Here $s_1\\ge\\lfloor n(1/p-1)\\rfloor$ and $s_2\\ge\\lfloor m(1/p-1)\\rfloor$. As usual, $\\lfloor n(1/p-1)\\rfloor$ denotes the maximal integer no more than $n(1/p-1)$. Applying this result, the authors establish the boundedness of the commutators generated by Calder\\'on-Zygmund operators and Lipschitz functions from the Lebesgue space $L^p({{\\mathbb R}^n\\times{\\mathbb R}^m})$ with some $p>1$ or the Hardy space $H^p({{\\mathbb R}^n\\times{\\mathbb R}^m})$ with some $p\\le1$ but near 1 to the Lebesgue space $L^q({{\\mathbb R}^n\\times{\\mathbb R}^m})$ with some $q>1$.", "revisions": [ { "version": "v2", "updated": "2009-06-08T12:45:49.000Z" } ], "analyses": { "subjects": [ "42B20", "42B30", "42B25", "47B47" ], "keywords": [ "product hardy spaces", "boundedness", "lebesgue space", "application", "quasi-banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.4725C" } } }