{ "id": "0903.4501", "version": "v4", "published": "2009-03-26T09:14:48.000Z", "updated": "2010-08-29T03:00:14.000Z", "title": "Schubert calculus and the Hopf algebra structures of exceptional Lie groups", "authors": [ "Haibao Duan", "Xuezhi Zhao" ], "comment": "22 pages", "journal": "Forum Mathematicum, Volume 26, Issue 1, Jan 2014, p.113-140", "categories": [ "math.AT", "math.AG" ], "abstract": "Let G be an exceptional Lie group with a maximal torus T. Based on common properties in the Schubert presentation of the cohomology ring H*(G/T;F_{p}) DZ1, and concrete expressions of generalized Weyl invariants for G over F_{p}, we obtain a unified approach to the structure of H*(G;F_{p}) as a Hopf algebra over the Steenrod algebra A_{p}. The results has been applied in Du2 to determine the near--Hopf ring structure on the integral cohomology of all exceptional Lie groups.", "revisions": [ { "version": "v4", "updated": "2010-08-29T03:00:14.000Z" } ], "analyses": { "subjects": [ "57T15", "14M15" ], "keywords": [ "exceptional lie group", "hopf algebra structures", "schubert calculus", "maximal torus", "steenrod algebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.4501D" } } }