{ "id": "0903.4334", "version": "v1", "published": "2009-03-25T13:40:33.000Z", "updated": "2009-03-25T13:40:33.000Z", "title": "On the classification of lattices over $\\Q(\\sqrt{-3})$, which are even unimodular $\\Z$-lattices", "authors": [ "Michael Hentschel", "Aloys Krieg", "Gabriele Nebe" ], "categories": [ "math.NT" ], "abstract": "We give a classification of the lattices of rank r=4, r=8 and r=12 over \\Q(\\sqrt{-3}), which are even and unimodular \\Z-lattices. Using this classification we construct the associated theta series, which are Hermitian modular forms, and compute the filtration of cusp forms.", "revisions": [ { "version": "v1", "updated": "2009-03-25T13:40:33.000Z" } ], "analyses": { "keywords": [ "classification", "unimodular", "hermitian modular forms", "cusp forms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.4334H" } } }