{ "id": "0903.3892", "version": "v2", "published": "2009-03-23T16:36:16.000Z", "updated": "2015-07-02T16:57:59.000Z", "title": "Exit time for anchored expansion", "authors": [ "T. Delmotte", "C. Rau" ], "comment": "18 pages, version 2", "categories": [ "math.PR" ], "abstract": "Let $(X_n)_{n\\geq 0}$ be a reversible random walk on a graph $G$ satisfying an anchored isoperimetric inequality. We give upper bounds for exit time (and occupation time in transient case) by X of any set which contains the root. As an application, we consider random environments of $\\Z^d$.", "revisions": [ { "version": "v1", "updated": "2009-03-23T16:36:16.000Z", "comment": "18 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-07-02T16:57:59.000Z" } ], "analyses": { "subjects": [ "60G50", "60J10", "60J45", "31C05" ], "keywords": [ "exit time", "anchored expansion", "random environments", "reversible random walk", "transient case" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.3892D" } } }