{ "id": "0903.3453", "version": "v3", "published": "2009-03-20T04:49:06.000Z", "updated": "2011-03-02T13:53:27.000Z", "title": "Graded $q$-Schur algebras", "authors": [ "Susumu Ariki" ], "comment": "25 pages, (v2) added details of the proof, (v3) have changed notations to standard ones and corrected various confusions", "categories": [ "math.RT", "math.QA" ], "abstract": "Generalizing recent work of Brundan and Kleshchev, we introduce grading on Dipper-James' $q$-Schur algebra, and prove a graded analogue of the Leclerc and Thibon's conjecture on the decomposition numbers of the $q$-Schur algebra when $q^2\\neq1$ and $q^3\\neq1$.", "revisions": [ { "version": "v3", "updated": "2011-03-02T13:53:27.000Z" } ], "analyses": { "subjects": [ "17B37" ], "keywords": [ "schur algebra", "thibons conjecture", "decomposition numbers", "dipper-james" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.3453A" } } }