{ "id": "0903.3179", "version": "v1", "published": "2009-03-18T15:11:04.000Z", "updated": "2009-03-18T15:11:04.000Z", "title": "Entropy of Random Walk Range", "authors": [ "Itai Benjamini", "Gady Kozma", "Ariel Yadin", "Amir Yehudayoff" ], "categories": [ "math.PR", "math.CO" ], "abstract": "We study the entropy of the set traced by an $n$-step random walk on $\\Z^d$. We show that for $d \\geq 3$, the entropy is of order $n$. For $d = 2$, the entropy is of order $n/\\log^2 n$. These values are essentially governed by the size of the boundary of the trace.", "revisions": [ { "version": "v1", "updated": "2009-03-18T15:11:04.000Z" } ], "analyses": { "subjects": [ "60C05" ], "keywords": [ "random walk range", "step random walk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010AnIHP..46.1080B" } } }