{ "id": "0903.3105", "version": "v1", "published": "2009-03-18T08:39:16.000Z", "updated": "2009-03-18T08:39:16.000Z", "title": "On logarithmic derivatives of zeta functions in families of global fields", "authors": [ "Philippe Lebacque", "Alexey Zykin" ], "categories": [ "math.NT" ], "abstract": "We prove a formula for the limit of logarithmic derivatives of zeta functions in families of global fields with an explicit error term. This can be regarded as a rather far reaching generalization of the explicit Brauer-Siegel theorem both for number fields and function fields.", "revisions": [ { "version": "v1", "updated": "2009-03-18T08:39:16.000Z" } ], "analyses": { "subjects": [ "11R42", "11M38" ], "keywords": [ "global fields", "zeta functions", "logarithmic derivatives", "explicit error term", "explicit brauer-siegel theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.3105L" } } }