{ "id": "0903.3048", "version": "v1", "published": "2009-03-17T21:03:03.000Z", "updated": "2009-03-17T21:03:03.000Z", "title": "Biclique Coverings and the Chromatic Number", "authors": [ "Dhruv Mubayi", "Sundar Vishwanathan" ], "categories": [ "math.CO" ], "abstract": "Consider a graph $G$ with chromatic number $k$ and a collection of complete bipartite graphs, or bicliques, that cover the edges of $G$. We prove the following two results: \\medskip \\noindent $\\bullet$ If the bicliques partition the edges of $G$, then their number is at least $2^{\\sqrt{\\log_2 k}}$. This is the first improvement of the easy lower bound of $\\log_2 k$, while the Alon-Saks-Seymour conjecture states that this can be improved to $k-1$. \\medskip \\noindent $\\bullet$ The sum of the orders of the bicliques is at least $(1-o(1))k\\log_2 k$. This generalizes, in asymptotic form, a result of Katona and Szemer\\'edi who proved that the minimum is $k\\log_2 k$ when $G$ is a clique.", "revisions": [ { "version": "v1", "updated": "2009-03-17T21:03:03.000Z" } ], "analyses": { "keywords": [ "chromatic number", "biclique coverings", "complete bipartite graphs", "alon-saks-seymour conjecture states", "bicliques partition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.3048M" } } }