{ "id": "0903.2871", "version": "v1", "published": "2009-03-16T22:58:31.000Z", "updated": "2009-03-16T22:58:31.000Z", "title": "De Rham cohomology of diffeological spaces and foliations", "authors": [ "G. Hector", "E. Macías-Virgós", "E. Sanmartín-Carbón" ], "comment": "13 pages", "categories": [ "math.DG" ], "abstract": "Let $(M,\\mathcal{F})$ be a foliated manifold. We prove that there is a canonical isomorphism between the complex of base-like forms $\\Omega^*_b(M,\\mathcal{F})$ of the foliation and the \"De Rham complex\" of the space of leaves $M/\\mathcal{F}$ when considered as a \"diffeological\" quotient. Consequently, the two corresponding cohomology groups $H^*_b(M,\\mathcal{F})$ and $H^*(M/\\mathcal{F})$ are isomorphic.", "revisions": [ { "version": "v1", "updated": "2009-03-16T22:58:31.000Z" } ], "analyses": { "subjects": [ "57R30", "58B99" ], "keywords": [ "rham cohomology", "diffeological spaces", "rham complex", "corresponding cohomology groups", "foliated manifold" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.2871H" } } }