{ "id": "0903.2510", "version": "v1", "published": "2009-03-13T22:29:23.000Z", "updated": "2009-03-13T22:29:23.000Z", "title": "On the volume set of point sets in vector spaces over finite fields", "authors": [ "Le Anh Vinh" ], "categories": [ "math.CO" ], "abstract": "We show that if $\\mathcal{E}$ is a subset of the $d$-dimensional vector space over a finite field $\\mathbbm{F}_q$ ($d \\geq 3$) of cardinality $|\\mathcal{E}| \\geq (d-1)q^{d - 1}$, then the set of volumes of $d$-dimensional parallelepipeds determined by $\\mathcal{E}$ covers $\\mathbbm{F}_q$. This bound is sharp up to a factor of $(d-1)$ as taking $\\mathcal{E}$ to be a $(d - 1)$-hyperplane through the origin shows.", "revisions": [ { "version": "v1", "updated": "2009-03-13T22:29:23.000Z" } ], "analyses": { "keywords": [ "finite field", "point sets", "volume set", "dimensional vector space", "cardinality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.2510V" } } }