{ "id": "0903.2506", "version": "v1", "published": "2009-03-13T22:16:16.000Z", "updated": "2009-03-13T22:16:16.000Z", "title": "On k-simplexes in (2k-1)-dimensional vector spaces over finite fields", "authors": [ "Le Anh Vinh" ], "comment": "FPSAC 2009", "categories": [ "math.CO" ], "abstract": "We show that if the cardinality of a subset of the $(2k-1)$-dimensional vector space over a finite field with $q$ elements is $\\gg q^{2k-1-\\frac{1}{2k}}$, then it contains a positive proportional of all $k$-simplexes up to congruence.", "revisions": [ { "version": "v1", "updated": "2009-03-13T22:16:16.000Z" } ], "analyses": { "keywords": [ "finite field", "k-simplexes", "dimensional vector space", "cardinality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.2506V" } } }