{ "id": "0903.2201", "version": "v1", "published": "2009-03-12T15:53:59.000Z", "updated": "2009-03-12T15:53:59.000Z", "title": "Flips in Graphs", "authors": [ "Tom Bohman", "Andrzej Dudek", "Alan Frieze", "Oleg Pikhurko" ], "categories": [ "math.CO" ], "abstract": "We study a problem motivated by a question related to quantum-error-correcting codes. Combinatorially, it involves the following graph parameter: $$f(G)=\\min\\set{|A|+|\\{x\\in V\\setminus A : d_A(x)\\text{is odd}\\}| : A\\neq\\emptyset},$$ where $V$ is the vertex set of $G$ and $d_A(x)$ is the number of neighbors of $x$ in $A$. We give asymptotically tight estimates of $f$ for the random graph $G_{n,p}$ when $p$ is constant. Also, if $$f(n)=\\max\\set{f(G): |V(G)|=n}$$ then we show that $f(n)\\leq (0.382+o(1))n$.", "revisions": [ { "version": "v1", "updated": "2009-03-12T15:53:59.000Z" } ], "analyses": { "keywords": [ "graph parameter", "vertex set", "asymptotically tight estimates", "random graph", "quantum-error-correcting codes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.2201B" } } }