{ "id": "0903.1984", "version": "v1", "published": "2009-03-11T14:36:24.000Z", "updated": "2009-03-11T14:36:24.000Z", "title": "Sharp inequalities for polygamma functions", "authors": [ "Feng Qi", "Bai-Ni Guo" ], "comment": "11 pages", "categories": [ "math.CA" ], "abstract": "The main aim of this paper is to prove that the double inequality \\frac{(k-1)!}{\\Bigl\\{x+\\Bigl[\\frac{(k-1)!}{|\\psi^{(k)}(1)|}\\Bigr]^{1/k}\\Bigr\\}^k} +\\frac{k!}{x^{k+1}}<\\bigl|\\psi^{(k)}(x)\\bigr|<\\frac{(k-1)!}{\\bigl(x+\\frac12\\bigr)^k}+\\frac{k!}{x^{k+1}} holds for $x>0$ and $k\\in\\mathbb{N}$ and that the constants $\\Bigl[\\frac{(k-1)!}{|\\psi^{(k)}(1)|}\\Bigr]^{1/k}$ and $\\frac12$ are the best possible. In passing, some related inequalities and (logarithmically) complete monotonicity results concerning the gamma, psi and polygamma functions are surveyed.", "revisions": [ { "version": "v1", "updated": "2009-03-11T14:36:24.000Z" } ], "analyses": { "subjects": [ "26A48", "26D07", "26D15", "33B15" ], "keywords": [ "polygamma functions", "sharp inequalities", "main aim", "complete monotonicity results concerning", "related inequalities" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.1984Q" } } }